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TATL FLYING-BOAT HULLS AND A TRANSVERSE-STEP HULL
WITH EXTENDED AFTERBODYL

By John M. Riebe and Rodger L. Naeseth
SUMMARY

An investigation was made to determine the aerodynamic characteris-
tics in the presence of a wing of three deep-step planing-tail flying-
boat hulls which differed only in the amount of step fairing. The hulls
were derived by 1ncreasing the unfaired-step depth of a planing-taill
hull of a previous aerodynamic Ilnvestigation to a depth of gbout 92 per-
cent of the hull beam. For the purpose of comparison, tests were also
made of a transverse-step hull with an extended afterbody. o

The investigation indicated that the transverse-step hull with
extended afterbody had sebout the same minimum drag coefficient, 0.0066,
ag a conventional hull and an angle-of-attack range for minimum drag of
30 to 5°. The hull with a deep unfaired step had a minimum drag coef-
ficient of 0.0057; which was 14 percent less than the transverse-step
hull with extended afterbody; the hulls with step fairing had up to
4L percent less minimum drag coefficient than the transverse-step hull.
Longitudinal and lateral instability varied 1little with step fairing
and was about the same as for a conventional hull.

INTRODUCTION

In view of the requirements for increased range and speed in. .
flying-boat designs, an investigation of the aerodynamic characteristics
of flying-bost hulls as affected by hull dimensions and hull shape has

lSu.persedes the recently declassified NACA RM L8I27 entitled .
"Aerodynamic Characteristics of Three Deep-Step Planing-Tail Flying-Boat
Hulls" by John M. Riebe and Rodger L. Naeseth, 1948, and NACA RM L6J23a
entitled "Aerodynamic Characteristics of Langley Tank Model 203 with
Extended Afterbody" by John M. Riebe and Rodger L. Naeseth, 1946.
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been conducted at the Langley Aeronautical ILaboratory of the National
Advisory Committee for Aeronautics. The results of one phase of the
investigation, presented in reference 1, have indicated that substantial
drag reductions can be obtained for planing-tail flying-boat hulls 1if

proper step failrings are incorporated in the hull. In the present——

investigation, exploratory tests were made to determine whether further

drag reductions might be obtained on this type of hull by deepening the
gtep and thereby reducing the skin area.

Results of tests in the Langley tank no. 2 (reference 2) have
indicated that thée three deep-step hulls of the present investigation -
would have satisfactory hydrodynamic cheracteristics.

Hydrodynamic tests (reference 3) have indicated that an extension
of the sternpost of conventional flying-boat hulls to the aft perpen-
dicular generally results in some improvement in landing behavior in
rough water. In order to. determine the effect of such a change on
the aerodynamic characteristics of one  of the hulls previously tested
(model 203, reference 4} and for the purpose of ctomparison with the '
.deep-step planing-tail hulls, tests of a transverse step extended-
afterbody hull were also made.

As in the previous aerodynamic investigations of flying-boat hulls
(references 1, 4, and 5), all hull aerodynamic characteristics deter-
mined include the effect af1nterference of the support wing.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as standard NACA coefficients
of forces and moments. Rolling-moment, yawing-moment, and pltching- _
moment—coefficients are glven about the locations (wing 30-percent-chord
point) shown in figures 1 and 2. Except where noted, the wing area, mean
aerodynamic chord, and sgpan used in determining the coefficients and
Reynolds numbers are those of the flying boat described in reference L.
The data are referred ta the stebility axes, which are a system of axes
having their origin at the center of moments shown in figures 1 and 2
and in which the Z-axls is in the plane of symmetry and perpendicular to

the relative wind, the X-axis is in the plane of symmetry and perpendicular

to the Z-&xis, and the Y-axls 1s perpendicular to the plane of symmetry.
The poeitive directions of the stabllity axes are shown Iin figure 3.

The coefficients and symbols are defined as followsi
C, 1ift coefficient (Lift/gS)

Cp - - dreg coefficient (Drag/qs)
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drag coefficient based on volume v of hull (2555—)

qv2/3

drag coefficient based on maximum cross-sectional area A
of hull (Drag/qA)

drag coefficient based on surface area W of hull (Drag/qW)

lateral-force coefficient (Y/gS)
rolling-moment coefficient (L/qSb)
pitching-moment coefficient (M/gSE)

yawing-moment coefficient (N/qSb)

when ¥ = 0

force along X-~axis, pounds
force slong Y-axls, pounds
force algng Z-axis, pounds
rolling moment, foot-pounds
pitching moment, foot-pounds
yawing moment, foot-pounds

free-stream dynamic pressure, pounds per square foot (pVQ/E)

wing area of %8-—scale model of flying boat (l§.26h sq ft)

L

< - scale model of flying

wing mean aerodynamic chord of
boat (1.377 £t)

wing span of fi- scele model of flying bost (13.971 £t)

air velocity, feet per second

mass density of alr, slugs per cubic foot
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a angie.of attack of hull base line, degrees
¥ angle of—yaw, degrees
R Reynolds number, based on wing mean aerodynamic chord of

fs-—scale model of flying boat

BCm/aa, rate of change of pitching-moment-coefficient with angle of
attack

Cp/d¥ rate of change of yawlng-moment coefficient with angle of yaw
BCY/BW rate of change of lateral-force cdéfficient with angle of yaw

Ke fuselege or hull moment factor, equivalent to dCp/da, Cp
based on hull beam and length and o« measured in radians

5T rate of-change- of fuselage or hull yawing-moment coefficient
A\l with angle of yaw, yawing moment based on hull volume and
measured about reference axis 0.3 hull length from nose

é;ﬁ 1 rate of change of yawing-moment coefficient with angle of

B sideslip’ B, yawing moment based on hull side area and
length and measured about reference axis 0.3 hull length
from nose and B 1n radlans

Subscript:

nin minimum
MODEL AND APPARATUS

The deep-step hull lines of Langley tank models 221E, 221G, and 221F
were drawn by the Langley Hydrodynamics Division by increasing the step
of hull 221B of reference 1 from a depth which was 23 percent of the
hull beam to a depth 92 percent of the hull beam and by maintaining the
same helght at the sternpost. Dimensions of .the hulls are given in
figure 1 and tables I to III; drawings of the deep-step fairings are
shown in figure 4. The transverse-step hull with extended afterbody
(Langley tank model 203 with extended afterbody) was the same as Langley
tank model 203 of referénée 4 with the exception of sternpost location
and afterbody angle of keel (fig. 5). Dimensions of the hull are given
in figure 2 and table IV. Genersl propdrtions for a step fairing for -
the transverse-step hull with extended afterbody are given in figure 6.

(b4
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The tesgt model was the same one used in the Investigation of
reference 1; transformation from one hull to another was facilitsted by
cutting the underpart of the model and by replacing interchangeable
blocks corresponding to each step-falring condition. The hull and
interchangeable blocks were of laminated-mahogany construction and were
finished with pigmented varnish.

The volumes, surface areas, maximum cross-sectional areas, and
slde areas for the hulls are compared in the following table:

Maximum cross- Side
Volume | Surface area
Hull (cu in.) (sq in.) sectional area area
: q in. (sq in.) (sq in.)
203 with extended | 13,338 4857 182 1845
afterbody

221F 10,35k L6k ' 182 1512

221G 10,90k hol7 182 1568

221F 11,502 h31h 182 1636

The hull was attached to a wing which was mounted horizontally as
shown in figure 7. The wing (which was the same as that of references 1,
b, and 5) was set at an angle of incidence of 40 on all models, had a
20-1inch chord, and was of NACA 4321 airfoil section.

TESTS

Test Conditions

The tests were made in the Langley 300 MPH 7- by 10-foot tunnel.
Test conditions are summarized in the following table:

q v R M
(1b/sq ft) (mph)
Tests with extended afterbody®
25 100 1.25 x 100 0.13
170 275 2.95 <35
Tests with all hulls
25 100 1.30 x 106 0.13
100 201 2.50 .26
170 27h 3.10 <35

&These tests were made first with just the
transverse-step hull with extended afterbody; sub-
sequent tests were made with this hull and the three
deep-~step hulls.
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Corrections

Blocking corrections have been applied to the wing-alone data and
to the wing-and-hull data. The hull drag has been corrected for

horizontal-buoyancy effects caused by & tunnel static-pressure gradient.

Angles of-attack have been corrected for structural deflections caused
by aerodynamic forces.

Test Procedure -

The aerodynamlc characteristics of the hulls with interference of
the support wing were determined by testing the wing slone and the wing-
and-hull combinations under similar conditions. The hull aerodynamic
coefficients were thus determined by subtraction of wing-alone coef-
ficients from wing-and-hull coefficilents.

Tests were made at several Reynolds numbers. The tests of the _
extended-afterbody hull with and without step falring were made before
the tests of the three deep-step hulls and were limpited in angle-of-
attack range because of structural limitations of the support wing.

The subsequent tests with all the models wére made with a reinforced
wing. As a result of the reinforcement, the angle-of-attack range was
increased and the angle of attack for minimum drag was reached at-a

Reynolds number of 2.5 X 106 with gll the hulls.

In order to minimize possible errors resulting from transition
shift on the wing, the wing transition was fixed at the leading edge by
means of roughness strips of-carborundum particles of approximately
0.008-inch dismeter. The particles were applied for a length of
8 percent airfoil chord measured along the airfoil contour from the
leading edge on both upper and lower surfaces.

Hull transition for all tests was fixed by a strip of 0.008-inch-
dlameter carborundum particles 1/2 inch wide and located at approximately
5 percent of the hull length aft of the bow. All tests were made with
the support setup Bhown in figure 7. ' ' '

RESULTS AND DISCUSSION

The aerodynamic characteristics of the deep-step planing-tail hulls
in pitch are presented in figure 8; aerodynamic characteristics in yaw
are given 1in figure 9. The aerodynamic characteristics of Langley tank
model 203 with extended afterbody in pitch are presented in figures 10_
and 11, &nd the aérodynamic characteristics in yaw are presented in
figure 12. _ - R : :

I
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langley tank model 203 with extended afterbody had a minimum drag
coefficient of 0.0066, which is ebout the same as for a conventional
hull of the same over-all-length - beam ratic (reference 4); the angle-
of-attack range for minimum dreg extended from 3° to 5°. Although the
angle of attack for minimum drag was not reached, extrapolation of the
date of figure 11 indicated that incorporating a step fairing which
extended nine times the depth of the step at the keel would result in
a reduction of gbout 1l percent in minimum drag coefficient.

The hull with the unfaired deep step, model 221E, had & minimum
drag coefficient of 0.0057 which was 1l percent less than the hull with
extended afterbody or a conventional hull. Comparison of the drag
results of hull 221E with those of hull 221B of reference 1 indicates
that increasing the step from a depth 23 percent of the hull beam to
92 percent of the hull beam resulted in a drag-coefficient reduction
of 12 percent. The hull with the falring which had elements approaching
straight lines, model 221F, had-a minimum drag coefficientof 0.0037;
according to reference 5 a streamlined body having approximetely the
game length and volume and the same wing interference had about 25 per-
cent less minimum drag. The importance of proper step-fairing design
in reducing serodynamic drag on deep-step planing-tail hulls is shown
by the larger value of drag coefficient, 0.0045, for hull 221G with the
concave step fairing. The drag coefficient for this hull configurstion
was about 32 percent less than the hull with extended afterbody; whereas
hull 221F with the fuller fairing was sbout L4 percent less.

Tuft studies of the step part of the planing-tail hulls (fig. 13)
indicate that the lower drag for the hulls with step fairing results
from the elimination of separation which occurs on the sides of the
unfaired deep-step hull.

Minimum drag coefficients based on the volume to the two-thirds
power (CDV)min’ on meximum cross-sectional area (CDA)min’ and on

surface area (?D‘) are presented in table V along with minimum

¥)min
drag coefflcients based on wing area. These data indicate that hull 221F
had the least drag for a unit volume and for unit surface areas.

It should be noted when the results of this paper are compared with
the results of hulls tested alone that subtraction of wing-alone data
from wing-and-hull data, the method used to determine the hull-and-wing
interference data in this paper, results in a lower minimum drag coef-
ficient because of negative wing interference drag. This characteristic
results because an appreciable part of the support wing was enclosed by
the hull and shielded from the air stream. Unless this favorable inter-
ference effect 1s consldered when comparisons are made with other hull-
drag or fuselage-drag data, the drag coefficients tebulated herein,
especielly (CDW)min’ may seem sbnormally low.
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As with the planing-tail hulls of a previous investigation (refer-
egce 1), the angle-of-attack range for mlnimum drag occ¢urred from about
3° to 3°. _

Longitudinal and lateral instability, as shown by the parameters

3Cm/da, C,/dV, and dCy/dV (teble V), varied little with step fairing

and was sbout the same as for a conventional hull or for a hull w1th
extended afterbody.

In order to compare the results of these tests with results of .
investigations made of other hulls and fuselages, the parameters K,
BCnf'/aﬂﬂ, and Cp/OB, as derived from references 6, 7, and 8, respec-

tively, are also included.in teble V. The parameter X, 1s a fuselage

moment factor, in the form of . BCm/Ba based on hull beam and length
where o 18 in radians. The yawing-moment coefficient Cnf' in

BCnf'/BW' is based on volume and is given about a reference axis 0.3

hull length from the nose. The parameter. oCy,/O0p is based on hull side

aree and length, where the yawing moment is also given about a reference

axis 0.3 hull length from the nose and P . is given in radians. Insta-

bility as glven by the parameters BCIH./Bﬂﬂ and oCp/08 agreed closely

with values given in references 7 and 8.

CONCLUSIONS

The results of an investigation to determine the aerodynamic char-
ascteristics of three deep-step planing-tail flying-boat hulls which
differed only in the amount of step fairing and, for the purpose of

comparison, of a transverse-step hull with an extended afterbody indicated

the following conclusions:

1. The transverse-step hull with extended afterbody had about the
seme -minimum drag coefficient, 0.0066, as a conventional hull.

2. The planing-tail hull with a deep unfaired step had a minimum
drag coefficient of Q. 0057, about 14 percent less than the transverse-
step hull with extended afterbody; the hulle with step fairing had up
to L4 percent less minlmum drag coefficient than the transverse -step
hull.

3. The angle-of-attack range for minimum drag was generally
between 3° and 5° for all planing-tall hulls tested.

(AREEEY

ki



2G

NACA TN 2762 9

k. Longitudinal end lateral instability was the same for all
planing-tail hulls and was about the seme as for the transverse-step
hull with extended afterbody or for a conventional hull.

Langley Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., October 6, 1947
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TARLE V
DRAG CORFFICIENTS AND STABILITY PARAMETERS FOR LANGLEY TANK
WOIELS 221F, 221G, 221F, AND 203 WITH EXTENIED AFTFRBOIY

[‘me drag coefficlients are given for s Reynolds number
of about 2.50 X 106
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. Figure 3.- System of stability axes. Positive values of forces, moments,
and angles are indicated by arrows.
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Figure 4.- Langley tank models 221E, 221G, and 221F
Langley 300 MPH T7- by 10-foot tunnel.
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Figure 5.~ Revisions to langley tank model 203 afterbody.
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Figure 6.- General details of step fairing for transverse-step hull with
extended afterbody. Bottom view of hull.
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Figure 7.- Langley tank model Z221F mounted in Langley 300 MPH
T- by 10-foot tunnel.
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(c) Langley tank model 221F. « = 4°, W

Figure 13,3 Tuft sfudies of Langley tank models 001E, 221G, and 221IF.
Tests were made with models mounted on 3ingle strut support.
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